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CHAPTER1
INTRODUCTION

1.1 Motivation for the Heat Transfer Modeling
v

Numerical heat transfer is a key issue in nuclear reactor analysis. For a high

temperature energy conversion system, energy from the nuclear fission process is

transferred to the coolant system by conduction, convection and radiation. This study is

especially focused on numerical analysis to solve the heat transfer problems in nuclear

reactor core design, which include the Heterogeneous Gaseous Core Reactor [HGCR],

High Temperature Gas Cooled Reactor [HTGR] and the XNR2000 nuclear rocket. Table

1-1 presents the al_plications of numerical modeling.

Table 1-1 Applications of numerical modeling.

Reactor Fluid Flow Heat Transfer Thermal Boundary

HGCR UF 4 gas Convection & Radiation Gas deposits heat to wall

HTGR Helium gas Convection Gas removes heat from wall

XNR2000 Hydrogen gas Convection Gas removes heat from wall

A Heterogeneous Gas Core Reactor uses a gaseous fissile material as fuel for power

generation, tl31 This allows for power generation at temperatures much higher than the

melting point of solid fuel nuclear reactors. Power generation and power conversion at

very high temperatures can potentially reduce the system mass and improve the specific

impulse performance of a nuclear thermal rocket. One of the most challenging issues

related to design and operation of gas core reactors is the containment of the high



temperaturefissioningplasma.Thewall coolingis themost importantissuein designof

gaseouscore nuclear reactors.The heat transfer processinvolved in an ultrahigh

temperaturegascorereactorsystemsis characterizedby theconvectiveflow of a radiating

gas.Uraniumcompoundgasesatpressuresin therangeof 10to 40atm areoptically thick.

At temperaturescloseto 3500°Kwhich is thetypical exit temperatureof thereactorcorein

a more recentdesign,the radiativeheattransferrate in theseopaquegasesis higherand

comparablewith theconvectiveheattransferrate. [37] Therefore, the heat transfer analysis of

a fissioning gas must include both convective and radiative transfer. The flow and radiation

transport equations must be solved simultaneously in order to determine the temperature

distribution and heat transfer rate. Figure 1-1 shows the high temperature vapor reactor

with advanced energy conversion system.

The HTGR primary system is composed of several loops, each housed within a large

cylinder of prestressed concrete. [44] The flow is directed downward through the core by a

circulator mounted above the steam generator in the cold leg. The reactor vessel and

steam generator are connected by a short, horizontal cross duct. The coolant from the core

exit plenum is directed laterally through the interior of the cross duct into the inlet of the

steam generator. Coolant from the steam generator and circulator is directed laterally

through the outer annulus of the cross duct into the core inlet plenum. The HTGR

primary coolant flow path is illustrated in Figure 1-2.

XNR2000 is an expander cycle nuclear rocket engine powered by a fast-spectrum

cermet-fueled nuclear reactor that heats hydrogen to a maximum propellant

temperature. I41The reactor is comprised of an outer annulus core of Mo-UO2 prismatic

fuel elements and a cylindrical inner core of W-UO 2 prismatic fuel elements. The

baseline XNR2000 reactor core consists of a total of 151 prismatic fuel elements of 55

cm in active length. The core is arranged such that an inner-outer core configuration is

obtained with 61 inner core fuel elements and 90 outer core fuel elements. [14] The

purpose of inner-outer core configuration is to provide a folded flow path for the



hydrogenpropellant flowing upwardthroughthe outercoreand downwardthrough the

innercore. The XNR2000 coolant flow path is shown in Figure 1-3.

1.2 Computational Method for CFD and Heat Transfer

The development of heat transfer modeling has been a major area of research for

several decades in the nuclear thermal hydraulics field. Most people attribute the first

definitive Computational Fluid Dynamics (CFD) work to Richardson in 1910, who

introduced point iterative schemes for numerically solving Laplace's equation and

bihamonic equation. He clearly defined the difference between problems which must be

solved by a relaxation scheme. In 1918, Liebmann presented an improved version of

Richadson's method. Liebmann's methods used values of the dependent variable both at

the new and old iteration level in each sweep through the computational grid. The

beginning of modem numerical analysis is attributed to a famous paper by Courant,

Fredrichs and lewy, [q the CFL, frequently seen in the literature. In that paper, uniqueness

and existence questions were addressed for the numerical solutions of partial differential

equations. It is original source for the CFL stability requirement for the numerical

solution of hyperbolic partial differential equations. However, limits to the above method

still existed for steady-state and low temperature conditions at that time.

In 1940, Southwell introduced a relaxation scheme which was used in solving fluid

dynamic problems where an improved relaxation scheme was required. During the

decades of 1940s and 1950s, Southwell's methods were generally the first numerical

techniques introduced to engineers. Alien applied Southwell's scheme to solve the

incompressible, viscous flow over a cylinder. They used the empirical or semi-empirical

information, wall function for the heat transfer studies. I46] However, this approach is too

sensitive to the near wall grids and inaccurate at the flow separation region. Therefore, a

highly-stretched fine grid near wall boundaries is required to solve unsteady and turbulent



flow problems.Unfortunately,the fine grid yields computationaldifficulties in terms of

the stability limitation and the computation time. To remove the time step limitation, the

fully-implicit numerical schemes were developed in the mid-1970's by Briley and

McDonald. [71

Professor John von Neumann developed his method for evaluating the stability of

numerical methods for solving time-marching problems. O'Brien, Hyman and Kaplan

later presented a detailed description of von Neumann method. This paper is significant

because it presents a practical way of evaluating stability. At same time, progress was

being made on the development of methods for both elliptic and parabolic problems.

Peaceman and Rachford developed a new family of implicit method for parabolic and

elliptic equations in which sweep directions were alternated and the allowed step size was

unrestricted. [2°] But those methods cannot be used to handle the discontinuity problems,

such as shock capture problem. It was difficult to solve transonic and supersonic fluid

flow problems.

Early efforts at solving flows with shock waves were part of Lax's approach. [91Lax

and Wendroff introduced a method for computing flows with shocks which was a second-

order scheme that avoided the excessive smearing of earlier approaches. MacCormack

has devised an implicit scheme that requires only the inversion of block bidiagonal

systems rather than block tridiagonal systems, thus yielding savings in computer time and

storage requirements. During the past 20 years, the explicit methods were developed to

solve the compressible Navier-Stokes equations which include the Hopscotch method,

DuFort-Frankel method, Brailovskaya method, Allen-Cheng method, Lax-Wendroff

method and the MacCormack method. If71 All of above methods, except the MacCormack

scheme, are first-order accurate so that they cannot be used to accurately compute the

time evolution of a flow field. [231 In addition, all of the methods have a stability

restriction which limits the maximum time step. The allowable time step is given by the

CFL condition, which for 2-D problem becomes



Az

wherea is themaximumeigenvalue.Fortheotherschemes,analyticalstability conditions

cannotbe obtained[2°]and a numericalinvestigationis presentedin Figure 1-4. In this

graph,the schemesarestablein the regionbelow the correspondingcurve.Figure 1-4

showsthattheMacCormackmethodpresentsthebeststability.

TheMacCormackis the mostpopulartwo-stepLax-Wendroffmethodfor solving

problemswith shock-capturingschemes.[81 This method is designed to solve time-

dependent equations such as the complete Navier-Stokes equations without any artificial

dissipation term or limiters. It is based on the second-order accurate explicit predictor-

corrector method but adds an implicit procedure in the predictor-corrector sequence for

points at which the local CFL number exceeds the stability limit. The method has been

applied to two-dimensional internal supersonic flows, two-dimensional external flows,

external axisymmetric flows and three-dimensional flows over a biconic body with a

compression flap. [28]This scheme was applied to either the complete or thin layer forms

of unsteady Navier-Stokes equations.

MacCormack's method is one of the most efficient of the second-order schemes from

point of view of operation count. This approach is well adopted for time-dependent

problems; it should be inserted in a multi-grid framework. The investigations on multi-

grid Lax-Wendroff-type schemes can be found in reference [17].

The important conclusion is that among all second-order viscous Lax-Wendroff

schemes, MacCormack scheme, with flux split'ted operators, presents the best stability,

consistency and efficiency. IzS]



1.3 Objective and Overview

The main objective of this study is to develop a computational fluid dynamics and

heat transfer model for convective, conductive and radiative heat transfer in high power

density gas cooled and gaseous core nuclear reactors and the XNR2000 nuclear rocket

core. To achieve this goal axisymmetric, thin-layer Navier-Stokes equations associated

with 1-D integral approximation, Rosseland's diffusion approximation and algebraic 2-

layer eddy viscosity turbulence model are used to simulate heat transfer in nuclear reactor

cores. An implicit-explicit, finite volume, MacCormack method in conjunction with

Gauss-Seidel line iteration procedure is utilized to solve the governing equations. An

enthalpy-rebalancing scheme is implemented to allow the convergence solutions to be

obtained with the applications of a wall heat flux. A two-dimensional method based on

finite element technique is used to investigate the geometric behavior of a nuclear reactor

fuel elements.

Chapter 2 describes MacCormack implicit-explicit model, Lomax and Baldwin's

two-layer algebraic turbulence model, Rosseland's diffusion model, wall heat transfer

model, enthalpy rebalancing scheme and the thermal conduction model. Chapter 3

provides the thermophysical properties of dissociated hydrogen, helium and UF 4 gases.

Chapter 4 presents the assessment and validation of the numerical model with separation

angle and drag force calculations around a sphere suspended in a cylinder, and heat

transfer correlation comparison. Chapter 5 presents the applications of numerical models

in gaseous core reactors, gas-cooled reactors and the XNR2000 nuclear rocket cores.

Finally, the conclusions of this thesis are described in Chapter 6.
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CHAPTER 2

NUMERICAL MODELING

2.1 Governing Equations

Combined convective and radiative heat transfer of simultaneously developing

turbulent flow in a smooth circular tube with nongray gases is numerically modeled.

Based on the physical considerations, the two-dimensional axisymmetric thin-layer

compressible Navier-Stokes equations in strong conservation law form with Rosseland's

approximation radiative heat transfer model and the algebraic two-layer eddy viscosity

turbulence model are used to simulate the fluid flow and heat transfer in the gas core

reactor. In order to derive the governing equations, the following assumption are

made:[ _°1

1. The axial viscous dissipation and thermal radiation are negligible compared with

the radial viscous dissipation and thermal radiation.

2. The axial heat conduction is negligible.

3. The gas absorbs and emits radiation but does not scatter.

4. The wall is a gray diffuse emitter and reflector.

5. There is no dissociation or phase change for UF 4 gas in the high temperature

range.

Based on these assumptions, the time-dependent, mass-averaged and compressible

Navier-Stokes equations in strong conservative and axisymmetric form are given as: [2s]

11
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OU, OF, + OG' aG_
Ot Oz Or Or

+H (2-1)

where

F01 1 r0vl_ pu = _,,,2+,, I puv I

u,=[ _/o._ / G-;= Ipv I Pv2 + P 1

k e J L(e+P)uJ L(e+ e)vJ

and the viscous and thermal source terms are

(2-2)

and

G_, =

0
Ou

4 p.r Ov 2 v
3 Or 3btrr

Ou 4 c_ ,, ,,

_trU-_r + 31.trV-_r - qc - q,

(2-3)

(2-4)

In the above formulas, [431u and v are the velocity components in z and r directions,

respectively, p is the density, P is the pressure, IXT is the total viscosity, q"¢ is the

conductive heat flux, and e is the total energy per unit volume which is related to the

internal energy e and kinetic energy.
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The total viscosity _t is given as the sum of its molecular component _m and

eddy component lae:

la = _t,. + I-t_ (2-6)

The eddy viscosity is obtained from the turbulent eddy viscosity model proposed by

Baldwin and Lomax. [51 The heat flux term includes the conductive heat flux term, qc ,

and radiative heat flux term, qr • Based on Fourier's law, the conductive heat flux can

be written as:

dT
qc" = -kc (2-7)

dr

where

(2-8)

Typical values of the molecular and turbulent Prandtl number at standard condition

are 0.9 and 0.72, respectively. The radiative heat flux term is presented in a later section.

The complete set of Navier-Stokes equations (2-1) includes one continuity

equation, two momentum equations, and one energy equation. In order to get six

unknowns, p (density), u (axial velocity component), v(radial velocity component), e

(total energy per unit volume), P (pressure) and T (temperature), two more supplement

equations which are given by perfect gas law are required. Under perfect gas law, there

are the following relations:
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G
P= 9RT e = CvT h= CpT 7- (2-9)

G

when using above relations, two additional equations are obtained as follows:

1 +vZ) 1P=(y - lfe--_ p(u2 (2-10)

(7-1)reR L-p 1 2 )]_ - +v2 (2-11)T

Hence, combining above equations (2-1), (2-10) and (2-11), a set of governing

equations is formed.

The Navier-Stokes equations are the coupled nonlinear mixed hyperbolic-parabolic

system of partial differential equations. At high Reynolds number condition, these

equations become stiff and are difficult to solve. Reynolds number is a measure of the

ratio of the inertial to the viscous forces of a fluid. The viscous terms which cause the

system to be parabolic are of the order of the reciprocal of the Reynolds number in

magnitude. At high Reynolds number the system is almost everywhere hyperbolic, the

viscous terms are negligible except in the boundary layers. Within these layers, the

viscous terms are significant and control the important phenomenon of boundary layer

separation. The disparity in magnitude at high Reynolds number between the inertial and

viscous terms causes the system to be mathematically stiff. The only way to solve the

complete Navier-Stokes equations is numerical procedure which will be discussed in the

later sections.

2.2 Numerical Procedure

A hybrid implicit-explicit numerical method based on the finite volume

discretization approach is used for computer implementation. The finite volume method
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usesthe integral forms of conservationequationson the finite cells. The equationsare

approximatedby summingthe fluxesof mass,momentumandenergyfrom neighboring

cells into eachcell, thereby partial differential equationsarechangedto the discrete

equations.

To deriveanimplicit form,equation(2-1) is differentiatedwith respectto time, t,

--+ + = +---
cOt cOz Or COr COt

(2-12)

where Ai, B i and Bv are the Jacobians ofFi, G i and Gv with respect to U, they are,

(2-13)

(2-14)

(2-15)

Letting

(2-16)

(2-17)

( cOU? +1

:w"+' (2-18)
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an implicit differenceapproximationto Equation(2-12)is

F D.A D.B]

L -- at--j 6u;,.)'= zxuT,j + aJ-/Tj"I+ba' zSz + Ar _.j

where

(2-19)

In the above equation, D indicates a difference operator. The forward difference

operator D+ and the backward difference operator D., are represented as follows:

D÷(A),,j = (AL,,j - (A),j (2-20)

D÷(A), a =(A)ia÷,-(A), a (2-21)

D_(A),j = (A),., - (A),_,._ (2-22)

D (A),,_= (A),j -(A),j__ (2-23)

In order to more realistically approximate the physics of the governing

equations, improve efficiency for the implicit scheme and reduce the numerical errors, a

flux vector splitting technique is used in this study. Steger and Warming pointed out

that [41]

F = A U (2-24)

and

G = BU (2-25)
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TheJacobianmatrixesA andB conbe diagonalizedby similarity transformationS×

andSyasfollows

[u o 0 0 ]

Io u+c o o I
I

A _lw-, 0 0 u 0 iwS_

Lo o o .-cA
(2-26)

Fv 0 o 0]

lov o o I
- W -1 WSyB=Syl 0 0 v+c 0

Loo o v-cJ
with

(2-27)

I-1 0 0 -llc 2]

Io
I

pc 0 1 II
s==io o 1 o I

Lo-._ o ,J
(2-28)

[1 0 0 -l l c 2"]

t I_1oi o o I
Sy -I 0 0 pc 1 I

Loo -_ ,J
(2-29)

F I o o ol
l-u� 1/ 0 0 I

w=l P P I
I-v/p o 1/p ol
k,_ -._ -_ _J

(2-30)

where c is the speed of sound, o_=l/2(u 2 -FV2), 13=7-1, and T is the ratio of the specific

heats of the gases. In general some of the elements of the diagonalized matrix above are
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positive and others are negative. Their signs determine the direction of information travel.

So we can define the following matrices: [26'27]

A=A+ +A_

r,,+l,_
I 2 o o

I u+c+lu+d
I 0 0

= S_ ' w-'l 2 u+laI o o
I 2

L 0 0 0

Fu-I_
I 2 0 0

I u+c-lu+d
I 0 0

S-_,w- I 2 u-la
0 0

] 2

0 0 0

]
o I

I
o I

o Ilws +
u-c+l.-d

2

0

o I
I

u-c-lu-4 I
2 3

(2-31)

B=B++B_

r,,+l_l
1 2 0 0

I v+lq
I o o

2 v+c+lv+4
= S_lw-ll 0 0

I 2

0 0 0

rv-lq
1 2 0 0

I v-L,_
I o o

S;'w-' 2 _+c-lv+d
0 0

I 2

L 0 0 0

0

0

_+
0

v-c+tv-d
2

l
o I

I
o I

o
I

(2-32)
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Using the direction of information travel, the flux crossing the surface separating

volumes i,j and i+l,j is

F._/2.j = A+U;o + A_U;._j (2-33)

Gi+1:2. j = B+U_,j + B_U,+,,j (2-34)

Considering the flux vector splitting technique and performing the operations

indicated in Equation (2-19), we obtain the following equation in terms of block matrices

CI, C2, C3, Ca and C5:

C2_Ui,j+ I + Cl_W$, j -1- C3_Ui,j_ l + C4_Wi+l, j -1- Cs_Ui_l, j = AWi nj + l_"I;nj (2-35)

where

A )CI=I+At i-1/2,j+--_i+l/2,j +

M'_i " 1/2+7i,j+1/2At i,j-1/2+ i,j+l/2+ zD.2 ,j-

C 2 =-At i,j+l/2+ 7 ,j+l/2

C 3 =-At i,j-1/2+_i,j-1/2

C4 =-A i+l/2,j
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4- /1,2Jl
Vo o o

[o o

M, =I g0 0 )_+2g

Lo up. v(_+2p.)

o]

ol
ol

N

1 o o ol
-U 1

-- 0 0
P P

-v 1
-- 0 -- 0

P P
cc - ei -u -v 1

P P P P

Equation (2-35) can be solved by line Gauss-Seidel iteration with alternating

sweeps in the backward and forward z-directions, [291as shown in Figure 2-1.

For k=l,3, ...

Backward Sweep:

c:u,% +c,su:j +c35u_,_,+c:u:÷,, +cs*u:;l,=Au,.5+_;",

and

(2-36)

For k=2, 4, ...

Forward Sweep:

C Xr:k. k+_ c'_r:÷_ +C.SU¼ij .... _+' " "2""_i,j+l "q- Cl_Ui,j q- "-.'3"."_i,j-i + t.,5oui_ 1j = AUij + zSJ--/;,j (2-37)

The above implicit block matrix equation can be put the following form:
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where

-E I

(2-38)

F10 o 03
Io 1 o 0 I

E_-I I
Io 0 -1 Or
Loo o 11

The last equation in Equation (2-38) is used to set the boundary conditions

which will be discussed in the later section.

With the above numerical schemes

equations have the following form:

The predictor step

the Upwind, Hybrid Explicit-Implicit

A%=-A +D_(C,-6.) H
Ar i,j

19+.A D .A+ D+.B D .B+ At -_

I + At(---_ + ---_)+- - At (--_-:- + ---_)- -_r(SG,)J,,jg)U,j"+' = AUT, j + _.-I;",j

U_.:l ,,,_ = u;j +au;";' (2-39)

The corrector step
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• D_ Gv)
AU_'_:_ =-A + H
-- --1 ,J

id

D+.A D .A+ D+.B D .B÷ At _ 8 .+,
I + At(_ + --_)+ At(---_ + --_)- _(SG,)Ji,j U,.j = AUT.;'+ AH;"j

n+l 1 n+l n+l

U,, s = _ (UT.j + U;.s + 8U;.j ) (2-40)

where _Uid n+l is calculated from Equation (2-38).

2.3 Turbulence Model

Turbulence modeling is the most important factor influencing the convergence of

the Navier-Stokes equation solver, which is classified according to the number of

supplementary partial differential equations. This number ranges from zero (algebraic

model) to two 0c-e model). The turbulent shear stresses in the mean-momentuna

equations are replaced by product of an effective viscosity and a mean rate of strain. The

zero-equation model uses algebraic formulae to find the turbulent viscosity, which

involve only properties of the mean velocity profile as unknowns. This is implied that the

mean motion is unaffected by turbulence intensity and the length scale, which can be

specified by an algebraic equation. One- and two-equation models obtain the velocity

scale from a solution of the modeled form of turbulent kinetic energy equation and the

specified length scale equation. In this study, the algebraic model has been used to yield

faster convergence at reasonable accuracy.

The algebraic turbulence model used in this analysis is a two-layer algebraic eddy

viscosity model proposed by Baldwin and Lomax. [5] The effects of turbulence are
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simulated in terms of the eddy viscosity coefficient, _t, which is calculated for an inner

and an outer region

where z is the normal distance from wall, and % is the smallest value of z at which

values from the inner and outer formulas are equal.

For the inner region, the Prandtl-Van Driest formulation for turbulent viscosity

is used:
+

(_.Lt)inner = pk2yZ[1-e (_)]2[co[ (2-41)

where co is the vorticity which is given by

and

i(Ou Or) 2

A ÷ = 26

where %, Pw and P,w are the local shear stress, density, and laminar viscosity

evaluated at the wall.

For the outer region, the Clauser formulation for turbulent viscosity is used:

(iLt,)o,,,e, =/oCcp p F,,_F_ae_(y ) (2-42)
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where _: is the Clauser constant, Cop is an additional constant, and

• S YuaxFuax ]
F,,_ = mlm 2 f[ CwxY_,,x ui_zr / FMax

(2-43)

The quantities YMAX and FMAX are determined from the function

y÷

F(y) = ylo[[1- e (_7)] (2-44)

In wakes, the exponential term of Equation (2-44) is set equal to zero• The

quantity FMAX is the maximum value of F(y) that occurs in a profile and YMAX is the

value of y at which it occurs. The Fkleb (y) is the Klebanoff intermittency factor given by

Fu, b(y ) = 1+5; Cueby (2-45)
\Y_ ;J

The quantity UolF is the difference between maximum and minimum total

velocity in the profile

(2-46)

The constants used for this model have been determined by requiring agreement with

the Cebeci formulation for a constant pressure boundary layer. The values determined are

Cop =1.6, Cwk =0.25, Cklcb =0.3, _:=0.4 and K=0.0168.

In effect the voticity co is used to determine the length scale, so that the necessity for

finding the outer edge of boundary layer is removed. This model has the advantage of

avoiding the necessity for finding the edge of the boundary layer and exhibits good

accuracy.
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Figure 2-1 Sweep direction for line Gauss-Seider iteration (From Reference [27]).
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2.4 Diffusion Model for Thermal Radiation

Under high temperature conditions of gaseous core reactor the radiative heat transfer

rate in these opaque gases is comparable with the convective heat transfer rate. Therefore,

the heat transfer analysis of a fissioning gas must include both convective and radiative

heat transfer. The flow and radiation transport equation must be solved simultaneously to

determine the temperature distribution and heat transfer rate. For such numerical model,

radiative and convective heat fluxes are combined in the energy equation. Although there

are several ways to obtain the radiative heat flux, for example, the Monte Carlo method,

the zoning method, and the p-n approximation, the Rosseland diffusion approximation is

widely used because it is simple to formulate and calculate. In order to use the Rosseland

diffusion approximation the following assumptions are required:

flow is an opaque and gray dense medium with only absorption and(1) The

emission.

(2) The radiation arriving at any location comes only from the immediate

surroundings because any other radiation is absorbed before arriving at that location.

(3) The particles are locally in thermal equilibrium and near velocity equilibrium.

(4) The axial radiative dissipation is neglected.

Under above assumption the radiative heat flux is proportional to the temperature

gradient and can be written as.[a7]

q, = -K, VT (2-47)

where I_ is the radiative conductivity and is defined by [4°]

16_Tw 3
K, - (2-48)

3a R
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whereaRis theRosselandmeanopacityandcris the Stefan-Boltzmannconstant(5.67"10

8 W/mE.K4). To obtain the Rosseland mean opacity aR, the spectral absorption coefficient

is averaged over the entire frequency range as the following: I11]

OBv

- dv
a R - _n z OBv

J--- dv
0 av

(2-49)

where v is the photon wave number, By is the Planck function, a_ is the spectral

absorption coefficient, and n is the real index of refraction. Direct calculation of the

Rosseland mean opacity for UF 4 is difficult due to the lack of experimental data for the

spectral absorption coefficient of UF4. However for this study, the Rosseland mean

opacity can be estimated by [12]

a R = Ncyph (2-50)

where N is the molecular number density of the gas and _ph is the photon collision cross

section per molecule. For UF 4 gas Oph is estimated to be equal to 2.76x10 "22 m 2. [10l Using

the assumption of the perfect gas law the molecular number density can be estimated as

N- p (2-51)
_:T

where _: is the Boltzmann constant (1.3806*10-23j/K), p is the gas pressure, and T is the

gas temperature. Therefore, the radiative conductivity can be written as

16o-K
1':,- r 4

3_ phP (2-52)

Using the estimated opacities the Rosseland approximation leads to a considerable

simplification in the expression for radiative heat flux. The radiative heat flux is added to

the Equations (2-3) and (2-4) to establish the balance of the energy equations. Since
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radiation leaving from the surface is not taken into account, the coefficient of radiation

conductivity in Equation (2-52) has to be changed from 16/3 to 8/3. [47]

2.5 Wall Heat Transfer Model

The system is limited to smooth, straight tubes within which the fluid flow is

turbulent. In the system, two boundary conditions, constant wall temperature and constant

wall heat flux on the outside surface of the tube, are of particular interest and considered

here. There are two ways to describe the convective heat transfer into the wall boundary.

One way is to use Newton's cooling law. That is

q" = h(T w - Tb) (2-53)

where h is the convective heat transfer coefficient or so-called unit thermal conductance,

which is not a material property as thermal conductivity. It is a complex function of the

composition of the fluid, the geometry of solid wall and the hydrodynamics of the fluid

motion, in particular, the temperature distribution near the solid wall. So it is impossible

to estimate the heat transfer coefficient without solving the Navier-Stokes equations.

The other way is to apply Fourier's law. That is

q._-
- w\--_r ,/ (2-54)

where kw is the thermal conductivity which is evaluated at the wall temperature. The

temperature gradient in equation (2-54) is calculated using the wall temperature and

adjacent cell temperature. It may be numerically written as

r2-L
q_ = -k, (2-55)

r2 - r1



29

The conditionof the aboveequationis thatthetemperaturedistributionnearthe wall

has to be linear. This meansthat equation(2-55) canonly be applied in the viscous

sublayer.

The turbulent boundary layer is composedof three different sublayers,such as

viscoussublayer,buffer layerandturbulentcore,which is presentedin Figure 2-2. In the

viscoussublayer,heattransferis dominatedby diffusion.Thetemperaturedistribution is

linear, as shown in Figure 2-3. In order to use equation(2-55), it is important to

determinethethicknessof theviscoussublayerwhichmaybeestimatedby the following

relation:[351

72.94z

_b -- (Rez)°9
(2-56)

Themagnitudeof gbis about2-5gm. This meansthatat least3 cells have to locate in

the 2-5 l.tm region near the solid-fluid interface. A simple sketch of finite volume mesh to

express the boundary index system is shown in Figure 2-4.

2.6 Boundary. Conditions

Following the above wall heat transfer model, three kinds of thermal boundary condition

are applied in this study, which are adiabatic boundary condition, a constant wall

temperature condition and constant heat flux condition.

The adiabatic boundary, condition

The general form and numerical expression are
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(2-57)

The physical meaning of this boundary condition is that no heat transfer passes through

the boundary.

The constant wall temperature condition

The general form and numerical expression are

Tw =f(z) (2-58)

T_ = 2Tw-T z (2-59)

The physical meaning of this boundary is that temperature is on the isothermal

condition. This boundary condition can be specified for the solid-fluid interface, which is

indicated in Figure 2-5.

The constant heat flux condition

The general form and numerical expression are

q" = const (2-60)

t

= -r,) (2-61)

Because both T_ and T 2 are unknown before each iteration, it is difficult to specify the

boundary condition which is indicated in Figure 2-6. An enthalpy-rebalancing scheme is

developed to apply this boundary condition. It is performed in the next section.
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2.7 Enthalpy-Rebalancing Scheme

For the problem with constant heat flux condition, which is shown in Figure 2-4, it is

difficult to obtain convergent solutions. The reason is that integrating solution is

impossibly found just from its first derivative. In order to solve problems under an

arbitrary heat flux boundary condition, a novel method of enthalpy-rebalancing at the

transverse flow surface has been developed. This scheme is based on the fact that under

steady conditions the gas enthalpy rise at each transverse flow surface is equal to the heat

removal from the wall. Mathematically, it can be written as follows:

(AQ) i = 27_RAzq7 (2-62)

Equation (2-62) is explicitly solved to obtain the balancing bulk temperature (Tb)i,

that is

(2-63)

where Tb is the bulk temperature, and Cpi is the local specific heat. In this section, (T b )i

is known. (T b )i+l can be found from Equation (2-63) which is always true in the transient

procedure based on the enthalpy-balancing principle. The bulk temperature ((T b )i+l )num

is calculated from temperature fields under every iteration. Since these two bulk

temperatures should be equal, their relation may be used as a convergence criterion as

follows:

5 - (Tb)'*t (2-64)
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Before achieving the steady-state flow conditions, the mass flux pu, is always smaller

than the final steady value. Therefore, during the transitory pre-steady state conditions the

value of 5 is greater than one. Whenever the mass flux approaches its steady-state value,

the convergence parameter _ approaches its asymptotic value which is one. At this

moment, the wall boundary condition (2-61) is used to calculate the wall temperature. As

soon as 5 is equal to one, a thermal steady-state condition is achieved. At this point, the

wall temperature is fixed to control the heat transfer through the solid wall until a global

thermal convergence is achieved. This scheme has been proven successful when

problems with heat flux boundary condition are to be solved.

2.8 Conduction Model

The temperature distribution in the fuel elements is the essential to the prediction of

the lifetime behavior of these components. The temperature distribution in the fuel

dependents on the volumetric heat generation rate, fuel material properties, dimension of

the fuel element and geometric configuration. Of these the first 3 parameters are related

the neutronic design considerations, so geometric configuration is the only optional factor

via a thermal analysis. There are four types of geometric configuration, plate, pin, tubular

and square lattice honeycomb, which are commonly used in reactor fuel element design.

The configurations can be found in Figure 2-7. In order to evaluate the geometric

configuration and predict the temperature distribution, a dimensionless number is defined

as the following:

6 (ct) - kAT (2-65)
q"D h(o_ )2
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where q'" is the volumetric heat generation rate, D h is the hydraulic diameter, k is

conductivity of the fuel materiel and AT is the difference between maximum temperature

and wall temperature and ot is void parameter which is defined as

Arrow (2-66)(X --
Aroto_

The physical concept behind this definition is the efficiency of the conductive heat

transfer. The focus of the Delta number is on the geometric behavior of the fuel element

which is strongly dependent on the temperature distribution. The thermal conduction

equation describes the temperature distribution in the fuel element. Under the assumption

of negligible thermal expansion, the general equation of heat conduction becomes: E31]

q_

v'r(x,y)+T =o (2-67)

where T is temperature distribution function (K)

q'" is the volumetric heat generation (w/cc)

k is thermal conductivity (J/cm/K)

2.8.1 Plate arid Pin Configurations

Because of the symmetric geometry, at steady state the general conduction equation

for geometries of plate and pin reduce to a ordinary differential equation which can be

written as:

For plate,
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dr(xY q_L o
d2x + k =

For pin

(2-68)

1 d(rdT(r)l+q, " 0

r= =T w

(2-69)

Equations 2-68 and 2-69 can be integrated, respectively:

m

T(x)= T_ + 2-7-,(/2 - 4x2).
6K

(2-70)

q" (D 2 _ 4r 2).r(r)= < +l--if"

Therefore,

(2-71)

(1-_) 2

5p;,_ - 32ct 2 (2-72)

(1-_) z

5p;. - 16ct 2 (2-73)

2.8.2 Tubular and Square Lattice Honeycomb Configurations

For complex geometry, such as tubular and square lattice honeycomb, partial

differential equation (2-55) can not be solved analytically. The computer code ANSYS is

used to get the numerical results.
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ThegeneralpurposeFiniteElementcodeANSYS developedby Del Salvoet al. uses

a setof elementswhosestiffnessmatriceshavealreadybeensetup. These elements are

referred to by a pair of numbers, each identifying the type of analysis and the degrees

of freedom per node. ANSYS uses the following relationships for heat transfer analysis:

_,_

V2T(x'Y)+ T : 0 (2-74)

These equations are solved by the Finite Element (FE) technique. To start with, a

temperature distribution is obtained based on an input reference temperature and then

properties such as thermal conductivity, are evaluated at nodal temperatures. This

procedure is continued until a convergence in nodal temperature is achieved. Physical

properties of the structural material at each node are then evaluated based on this

calculated nodal temperature. These nodal temperatures are stored in a file for later use.

The input parameters and sample input file are listed below:

Table 2-1 Input parameters for ANSYS analysis.

Parameter

Volumetric heat-generation rate

Surrounding temperature

Heat-transfer coefficient

Thermal conductivity

Specific heat, constant pressure

Symbol

ll!

T5

h

k

Cp

Value and Unit

9 (W/rl'Lrn.2)

2500 (K)

0.0655 (w]mm2.K)

0.036 (W/mm.K)

4.44 (J/kg.K)
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Thesampledatafor ANSYS analysis:

/title, tubular

kan, -1

treff,2500

et, l,55

iter,- 1

ktemp,- 1

k,l,O.O

k,2,0.278

k,3,0.62

k,4,0.791

k,5,0.791,0.53

k,6,0.371,0.6425

k,7,0.1855,0.3213

k,8,0.11,0.19

L, 1,2

L,2,3

L,3,4

L,4,5

larc,5,6,4,-0.84

elsiz, ,50

L,6,7

L,7,8

L,8,1

a,1,4,5,6

amesh,all

WSOrt,X

wsort,y

lssel,line, 1,4,1,1

hflow, aU,heat,O.O

nail

lsall

lssel,line,5,,, 1

eall

cvsf, all,z,,0.0655,2500

nail

lsall

lssel,line,6,8,1,1

hflow,all,heat,O.O
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nail

eail

kxx,1,0.036

kyy, 1,0.036

c, 1,4.44

q,all,9

lwrite

afwrite

FINI

The Figures 2-8 to 2-12 show the typical computation grids and temperature distribution

for tubular and square lattice honeycomb, respectively. The numerical results are

presented in the following tables:

Table 2-2 Variation of Delta number in tubular fuel element.

a Dh AT(K) 5

0.1 1.021 162 0.7826

0.2 1.286 111 0.2681

0.3 1.576 72 0.1161

0.4 1.822 49 0.0592

0.5 2.034 33 0.0319

0.6 2.228 24 0.0193

0.7 2.407 17 0.0117

0.8 2.573 14 0.0085



38

Table2- 3 Variation of Delta number in SLHC fuel elemem.

(x D h AT(K)

0.1 0.947 298 1.3297

0.2 1.341 188 0.4178

0.3 1.643 128 0.1896

0.4 1.897 88 0.0977

0.5 2.121 59 0.0525

0.6 2.324 38 0.0282

0.7 2.512 22 0.0141

0.8 2.683 9 0.0052

After polynomial fitting, the relations between Delta number and void parameter are

given as follows:

Table 2-4 Polynomial formula of the Delta number.

Configuration Delta Number

Plate (1 - ot )2

Pin

32ax 2

160_ 2

Tubular 2.1 - 18.9o_ + 73.6_ 2 _ 142.1ot 3 + 135.7ot 4 _ 50.6_ 5

SLHC 3.8 - 36.5(z + 147.2ot 2 _ 294.4c_ 3 + 286.7ot 4 _ 109.4_ 5

The above relations are presented in Figure 2-13.
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2.8.3 Applications of Delta Number

The delta number is similar to other dimensionless numbers in heat transfer, such as

Mach number and Reynolds number. It expresses the relationship between several

thermal parameters which are heat-generation rate, thermal conductivity, surrounding

temperature, maximum temperature and the geometric parameter. There are at lest two

important applications related to design of the nuclear fuel element: (1) to evaluate the

coolant channel configuration and (2) to predict the maximum temperature.

Delta number is function of the void parameter for several different coolant channel

configurations. From conduction of view, the optimum configuration can be determined

based on Figure 2-8. The smaller Delta number means the lower maximum temperature

in the fuel element. So the Delta number can be used to control temperature gradients,

which is important for the lifetime of reactor components.

Once the fuel surface temperature and volumetric heat generation rate have been

determined, the centerline temperature, maximum temperature of fuel element, can be

calculated from equation (2-65). This method to calculate centerline temperature, instead

of the time-consuming CFD and other iterative procedures, will remarkably simplify the

centerline temperature calculation. This method has been used by Reference [15] and

proved to be accurate and efficient.
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Figure 2-9 Temperature distribution in square lattice honeycomb fuel element (cz=0.25).
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Figure 2-10 Temperaturc distribution in square lattice honeycomb fuel element (oc=0.2).
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Figure 2-11 Temperature distribution in tubular fuel element (a:O.2).
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Figure 2-12 Temperature distribution in tubular fuel element (c_=0.2).
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CHAPTER 3

THERMOPHYSICAL PROPERTIES

Thermophysical properties are very important parameters in CFD calculation. In

order to get accurate results, the real thermophysical properties of hydrogen, helium and

UF 4 gases are used in this study.

3.1 Dissociated Hydrogen

The data of the hydrogen property package comes from three different sources which

provide information in different temperature regions. From temperatures ranging from

13.8 ° to 3000 °K, data is based on the National Bureau of Standards. Above 3000°K and

up to 10,000 °, the data is obtained from NASA computer programs. Above 10,000°K, the

data is generated by extrapolation of the data base. For the hydrogen properties, the data

provided by the hydrogen package is the best available at this time.

In order to get the hydrogen properties for given condition, a numerical code based

on cubic spline interpolation was developed. This code interpolates with respect to

temperatures or enthalpies and pressures to find all other thermodynamic properties, such

as density, viscosity, thermal conductivity, entropy, specific heat, speed of sound and

ratio of specific heats.

The concept of the cubic spline interpolation is to construct a cubic function Sk(X) on

each interval [Xk, Xk+l] SO that the resulting curve y = S(x) and its first and second

derivatives are all continuous on the large interval [x 0, xN]. The function S(x) is called a

cubic spline which has to satisfy the following equations: [36]

50
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I. S(x)= A_ + B,(x-x,)+Ck(x-x,) 2 + O_(x-x,) 3

II. S(x) = Yk

III. S k (xk+ I ) = Sk÷ 1(xk÷ . )

Iv. S_(x_÷,)= S_÷,(xk÷_)

v. S_(x_+,) = SL, (x_+,)

The above properties of cubic spline function are shown in Figure 3-1.

The general form of cubic spline equation Sk(X) is the following expression:

(3-1)

(3-2)

(3-3)

(3-4)

(3-5)

S"(xk)(x_+_-x) 3 S"(x_+,)(x_ -x) 3 y_ S"(x_)(x,+_-x_))(x_+l
S k(x) = 6(xk÷1- x k) 6(xk+I - xk) + (xk+, - x k 6 -

S"(x_.)(x_+, - x_)
6 )(xk - x)

Yk÷l
(

Xk+ 1 -- X k

x)-

(3.6)

Now use the properties IV and V to obtain an important relation with respect to x k,

Xk+l, Yk and Yk+l:

S"(x___)(x_-x___) S"(x_)(xk÷_-x___)
+

6 3

(Yk+_--Yk) (Yk--Yk-_)
+

Xk+ 1 --X k X k --X k_ 1

S"(x_+,)(x_+,-x_)
+

6
(3.7)

This equation is a system of n-1 linear algebraic equations to be solved simultaneously.

Its coefficient matrix is tridiagonal matrix. The linear system is diagonally dominant and

has a unique solution. After the linear system is solved, the unknowns, S"(Xk.0 , S"(xk)

and S"(Xk+0, are determined. The interpolation value can be calculated from equation

(3.7).

This code was used to draw 8 sets of curves that look very smooth when viewed by

the eye. The curves are shown in Figures 3-2 to 3-9.
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3.2 Helium Gas

The thermophysical properties, heat capacity Cp, viscosity p. and thermal

conductivity K¢, based on the references [34] and [45] are used throughout the

calculation. The formula of polynomial fitting are generated as follows:

Cp(kd / kg.K) = -8.3799x10 -s T z + 351145x10 -4 T + 0.87076 (3-8)

33 76 lx10 -7 T 3 - 8.4466xl 0 -4 T 2 + 0.909139 T + 139283

l.t(N.s / m2) - 1.07 (3-9)

0.257455T + 95.4545
K,(W / m.K) = 103

(3-10)

3.3 Uranium Tetrafluoride Gas

Thermophysical properties of UF 4 gas used throughout the calculation are given

by Equations (3-11)-(3-13). t3l In these equations, Cp is heat capacity, la is dynamic

viscosity and Kc is thermal conductivity.

Analysis of existing data and rigorous theoretical calculations are used to developed

the following heat capacity equations for the gaseous UF 4 in 1000 ° to 10,000°K range.

3.06 x 109

Cp(d / mol.K) = 1213+ 2.24 x 10 -3 T T 3
[ T < 3500°K ] (3-11)

Cp(J / mol. K) = 124.12 - 1.28 x 10 -3 T [ T > 3500°K ] (3-12)
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Usingthesemi-empiricalrelationsfor relatedtransportparameters,theviscosityof

UF4 in 1000 ° to 10,000°K range is developed [3°1as follows:

3.357 x 10-6 x/-f

_t(Pa.s) = a + bT (3-13)

where a = 0.8 b = -7.1 x 10 -5 [ T < 3500°K ]

a = 0.67 b = -2.04 x 10 -5 [ T > 3500°K ]

Thermal conductivity of UF 4 gas is estimated as:

Kc(W/m.K)= 3.2 g (Cp + 10.393) (3-14)

where heat capacity Cp is in J/mol.K, and the viscosity la is in Pa.s.
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CHAPTER 4

ASSESSMENT OF NUMERICAL MODELING

In order to check the assessment and validation, several problems have been carried

out to compare with published results. Excellent agreement with theoretical and

experimental results has been obtained. The details of the tests are indicated in the

following sections.

4.1 Drag Measurement and Separation Angle

Fluid flow studies over a sphere which is bounded in a cylindrical tube is of

fundamental importance and has received attention for bounded flow. This is typical

model for the low-drag measurement and determination of fluid viscosity. One of the

parameters of paramount importance for the fluid flow over a bluff body is the separation

angle. It is required for the drag force calculation and very difficult to ascertain by

experimentation. In this study a numerical analysis is performed to observe the

dependence of the separation angle on the diameter ratio between the sphere and the

cylinder (?). This study is based on the assumption that the Reynolds number is fairly

high but low enough to have a laminar boundary layer. Figure 4-1 to 4-4 illustrate the

flow patterns and separation angles for the cases 3,=0.3, 3,=0.4, 3,=0.6 and 7=0.8,

respectively. The results show that the separation angle reaches a minimum around 7=0.5.

This result provides very good agreement with following semi-empirical equation which

is based on the boundary layer analysis: t 35]

63



64

tI_(0.9277)+ O3 (2.095y 2 -0,3641)+ O5 (3.2466)' ' - 15495) '2 + 0.039)+

+_7 (4.396),6 _ 13.49073,4 + 0.46872,2 -0.0015)= 0
(5-1)

where • is function of separation angle. The following table provides the numerical

results to compare the boundary layer approximation:

Table 4-1 Comparison of separation angle between numerical calculation and boundary

layer approximation

DIAMETER RATIO SEPARATION ANGLE (DEGREE)

3' Numerical Calculation Boundary Layer Approximation

0.3 110.0 108.46

0.35 107.8

0.4 105.8

0.45 103.9

0.5 104.0

0.55 105.7

0.6 107.6

102.59

92.61

90.33

88.35

88.98

90.53

0.65 109.1 96.03

0.7 110.5 106.16

The comparison is shown in Figure 4-5.

An experiment was performed to measure drag force on a ball by using a Calm

instrument manufactured C2000 model microbalance. Teflon balls of different diameter

were centrally hung in a long cylindrical tube of diameter 22.54 mm. The spheres were
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suspendedby meansof afine nylon string(d=0.07mm),which canbefound in reference

[24]. A numericalinvestigationwascarriedout to comparewith theexperimentalresults.

Thedragforcecanbefound from thefollowing formula:

'_ __du (5-2)
Drag = gi dr

i=1

where/-ti is viscosity.

Figure 4-6 provides the comparison between the numerical and experimental results.

It is shown that by increasing the number of grid points on the sphere, the drag force

results finally approach the experimental values.

4.2 Empirical Correlations of Nusselt Number

Among the long list of correlations for the Nusselt number, axial distance corrections

and property corrections, the following correlations which have the more relevance to

heat transfer in a nuclear reactors are chosen to justify the validity of computational

results. 05,381

(1) Empirical Correlations of Nusselt Number

1. Colbum correlation (1933)

I

Nu = 0.023 Re °'8 Pr _ (4-3)
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2. Dittus-Boeltercorrelation(1930)

Nu = 0.023 Re °s Pr" (4-4)

3. Seide-Tate correlation (1936)

"_0.14

Nu = 0.027 Re °'8 Prl/3| lab |
\ l.t.,Y

(4-5)

4. Gnielinski-Petukov correlation (1970)

Ng/- (4-6)

5. Karman-Boelter-Martinelli correlation (1960)

Nu-

Re Pr

f ")'_
( +25_ Re _--_--_

0.83_[5 Pr+ 51n(5Pr+ 1) _ 60i_

(4-7)

where

1

f = 0.0014 + -8 Re-°32
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6. Notter-Sleicher correlation (1975)

Nu = 5.0+ 0.015 Re a Pr h (4-8)

where

0.24
a = 0.88

Pr+ 4

1
b =. + 0.5e -°'6 Pr

3

7. Churchill correlation (1977)

where

r r ¢
I I <2300-.eI

l alO +[ e 365 +

Nu= I I b2

L L

1

0.079 Re Pr

1+ pr4/5) 5/6

1

(RePrD_21_a=4.36__1+l 7.--_ )

I

r ]b 4.36_1 (287 RePr 6= +(, _ D) 2

c = 6.3

I

(4-9)

(2) Axial Distance Corrections for Nusselt Number

1. Perkins and Worsoe-Schmidt correction (1965)

Z -0,7 Zw o,7
(4-10)
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2. Piercecorrection(1963)

(4-11)

3. Bussardcorrection(1965)

(4-12)

4. Reynolds-Swearingtoncorrection(1965)

f= = + 0.8(1 = 70,000 Re -l's J (4-13)

(3) Property Corrections for Nusselt Number

1. Notter-Sleicher property correction

( ¢r 330.25

s. :t_; (4-14)

2. Volkov-Vanov property correction

(4-15)
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3. PerkinsandWorsoe-Schmidtpropertycorrection

(4-16)

Figure 4-7 comparesthe numericalresultswith four Nusseltnumber correlations.

These correlations include the Colbum equation, the Gnielinski correlation, the Karman-

Boelter-Martinelli equation and the Notter-Sleicher correlation. Figure 4-7 shows that

numerically calculated Nusselt number with some of empirical correlation results is

almost undistinguished. This comparison not only evaluated the empirical correlations of

Nusselt number, but also assessed the validation of numerical modeling.
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Figure 4-1 Flow pattern and separation angle for 3,=0.3 (_=110°).

1

Figure 4-2 Flow pattern and separation angle for 7=0.4 (q_=105.8°).
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Figure 4-3 Flow pattern and separation angle for y=0.6 ((_=107.6°).

Figure 4-4 Flow pattem and separation angle for 7=0.8 (_=114.3°).
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CHAPTER5
RESULTSAND DISCUSSION

This chapteris composedof threeparts.Thefirst part presentsthe numericalresults

for the fluid flow andheattransferin the coreof a gaseouscorenuclearreactor.UF4gas

is used to simulatethe flow of a Ultrahigh TemperatureVapor Core Reactor with

Magnetohydrodynamicgenerator(UTVR-MHD) system.The secondpart describesthe

numericalresults for fluid flow and heat transfer in the core of a gascooled reactor.

Heliumgasisutilized in this part.Thelastpart indicatestheresultsfor the fluid flow and

heattransferin XNR2000nuclearrocketcore.Hydrogengasis consideredin this study.

5.1 Calculations for a Gaseous Core Reactor

A gas core reactor uses a gaseous fissile material as fuel for power generation. This

allows for power generation at temperatures much higher than the melting point of solid

fuel nuclear reactors. Power generation and power conversion at very high temperatures

can potentially reduce the system mass and improve the specific impulse of a nuclear

thermal rocket. One of the most challenging issues related to design and operation of gas

core reactors is the containment of the fissioning plasma. The wall cooling is the most

important issue in design of gaseous core nuclear reactors. The heat transfer process

involved in an ultrahigh temperature gas core reactor systems is characterized by the

convective flow of a radiating gas. Uranium and uranium compound gases even at pressures

in the range of 10 to 40 atm are optically thick. At temperatures close to 3500°K which is

the typical exit temperature of the reactor core in a recent design, [is] the radiative heat

75
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transferrate in theseopaquegasesis higherand comparablewith the convectiveheat

transferrate.I121Therefore,theheattransferanalysisof a fissioninggasmust includeboth

convectiveandradiativetransfer.Theflow andradiationtransportequationsmustbesolved

simultaneouslyin orderto determinethetemperaturedistributionandheattransferrate.[39'421

The modelpresentedin this paperconsiderscombinedconvectionand radiation of

compressible,turbulent and developing flow of a radiatinggray gasundervery high

temperatureconditions.Although the combined convectiveand radiative heattransfer

problemhasbeenthetargetof manyinvestigations,acomprehensivenumericalsolutionof

this problemhasnotyet beenpublished,t21'321

Thecaseselectedfor this analysisconsistsof a cylindrical tube lm long and 0.05m

in diameter,i.e. z/D=20. The constantwall temperatureis setat 1600°K,and total inlet

temperatureis specifiedas2000°K,which is atypical designtemperatureat thecoreinlet

of the ultrahigh temperaturevapor corereactorsystem.A stagnationinlet pressureof 2

MPa,the backpressureof 1.8MPa andthreedifferent valuesof intemalheatgeneration

rate of 100MW/m3, 500 MW/m3and 1000MW/m3 areused.The Reynoldsnumber is

ranged from 104to 106.

Theflow domainis dividedinto 54 radial and54 axial controlvolumesspacednon-

uniformly. A fine grid, definedby algebraicmethod,wasusednearthe wall to ensure

more thantwo grid points in the laminarsublayer,asshownin Figure5-1.

5.1.1 The Temperature Distribution

The temperature distributions, which are obtained at a constant wall temperature of

1600°K and inlet stagnation temperature of 2000°K, are used for verification of effect of

internal heat generation rate and are presented in Figure 5-2. The relations between

temperature distribution and internal heat generation rate will be discussed in the next

section. The numerical results are compared with the results of Hoogenboom et al. tlSl
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Figure 5-3 shows that the maximum temperature and the trend are almost

undistinguished.TheNusseltnumberfor pureconvectionis comparedwith the resultsof

Petukhov-Kirillov-Grielinski equation,which is shownin Figure 5-4. The differences

betweenthose two resultsare less than 3% at the tube exit (z=lm). The excellent

agreementbetweenthe presentmodelandthe previousliteratureindicatesthe validity of

thenumericalmodelingfor gaseouscorereactors.

All of the aboveresultsareobtainedfrom the solutionof the flows at the steady-

state.In orderto verify thesteadystatesolution,theconvergencehistory for the velocity

and temperatureresidualis examined,asshownin Figure 5-5. In this case,the steady

stateis reachedwhentheroot-mean-squaredresidualsof velocity andtemperaturedrop 5

and 4 ordersof magnitudein about900 iterationsor 300 minutesof CPU time using a

486-66computer.Thevelocity andtemperatureresidualsaredefinedby

I

"= "J- Ui'J_j=l _ n+l

8_- (i max)(jmax)
(5-1)

!

8r - (i max)(/max)

(5-2)

5.1.2 Effect of Heat Generation Rate

Gas core nuclear reactors are characterized by high internal heat generation rate in

the fissile gas. The numerical model is used to predict the temperature distribution and heat

transfer rate for the gases with internal heat generation. Uniform heat generation rates

ranging from 100MW/m 3 to 1000MW/m 3 are included in the energy equation as source

terms.
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In Figure 5-6, the temperature distribution is presented for the three different values of

heat generation rate. Because of the radiative heat transfer, the curves become more flat and

grow faster than those of pure convection. The convective heat flux at the wall increases as

the power generation rate increases. The Figure 5-6 also shows that the temperature at a

heat generation rate of 1000 MW/m 3 increases more rapidly than others because the

radiation at high temperature is more dominant.

The maximum temperature, corresponding to the heat generation rates, are 2150°K,

2750°K and 3550°K, respectively. This is indicates that a heat generation rate higher than

1000MW/m 3 is necessary to maintain the gas temperature at about 3500°K, which is

typical temperature required to achieve high efficiency in the gas core reactors, t32] The

bulk temperature gradient at the wall is steeper than it would be in pure convection, which

is shown in Figure 5-2. These results indicate that the maximum temperature in the reactor

is strongly dependent on the value of heat generation rate.

5.1.3 Convective and Radiative Heat Fluxes

The heat fluxes are presented for both convective and radiative heat transfer. The

convective, radiative and total heat flux transferred to the wall are calculated using the

following equations: [37!

q'- I_
(5-3)

(5-4)

q, =q,-qc (5-5)



79

where qt, qc and qr are the total, convective and radiative heat fluxes, respectively. The

convective and radiative heat fluxes for the three different cases are presented in Figure 5-

7. As the heat generation rate increases, the corresponding heat flux increases. It is found

that at temperature close to 3500°K the radiative heat transfer rate is comparable with the

convective heat transfer. It is seen that the radiative fluxes increase as higher wall

temperatures. This behavior is due to the fact that the radiative wall heat flux is dependent

on the local conditions at the wall.

5.1.4 Nusselt number calculation

Nusselt number is the parameter which characterizes the heat transfer rate at the wall

boundary. The total, convective and radiative Nusselt number can be defined as:

qc D (5-6)

Nuc = k(Tw _ To)

q,.D (5-7)

NU" - k(r - Tb)

Nu, = Nu c + Nu,.
(5-8)

Figure 5-8 illustrates the relation between local Nusselt number and Reynolds

number. It is found that the Nusselt number increases as the heat generation rate

decreases. This is mainly due to the increase of dynamic viscosity of UF 4 gas as

temperature increases. Figure 5-8 also shows that the entrance length increases as the

Nusselt number decreases.
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Figure 5-2 Comparison of temperature distribution for different values of heat generation
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5.2 Calculations for a Gas Cooled Reactor

Over the past few decades, high temperature gas cooled reactors (HTGRs) have been

considered for a wide range of applications. Compactness, high efficiency and very high

temperature capability of these reactors are of great importance to power generation in

space. Other applications of HTGRs include: terrestrial electric power generation, nuclear

thermal propulsion and direct use of high temperature gas for a variety of industrial

processes such as steel-making. [19] The technology of HTGRs for commercial power

generation, as well as the computational methods for analysis of thermal fluid

performance of these reactors are well developed. The majority of existing HTGR

thermal fluid analysis methods use empirical correlation to resolve heat and momentum

transfer at the fuel-coolant boundary. However for HTGR concepts with operating

parameters beyond those of commercial HTGRs, the issue of the accuracy and

applicability of empirical correlations are not fully resolved. In particular, energy

transport in very compact space power reactor concepts may require flow at very high

velocities and high Reynolds numbers. This study presents a non-correlation based

computational thermal-fluid model to analyze flow and heat transfer in HTGR cores. The

computational model is also used to assess the performance of several mechanistic

correlations for calculation of pressure drop in HTGR

A dual path cermet fuel fast spectrum reactor is used as a computational model to

analyze the high-temperature gas-cooled reactor system. The core consists of 631 fuel

rods and 37 holes per fuel rod which has a flow-equivalent diameter of 3.2 mm and

heated length of 0.544 m. The stagnation inlet pressure of 6.5 MPa, the back pressure of 5

MPa and the core power of 25 MW, 50 MW, 75 MW and 100 MW are used,

respectively. The Reynolds number of the flow is in the range of 104 to 105.

The flow domain was divided into 54 radial and 54 axial control volumes spaced

non-uniformly. A fine grid, defined by an algebraic method, was used near the wall to
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ensuremorethan two grid points in the laminar sublayer which is used to control the heat

flux near the wall. Figure 5-9 shows the flow pattern which presents the typical velocity

distribution of turbulent flow.

5.2.1 Ter_perature Distribution

The maximum temperature in the HTGR reactor is strongly dependent on the power

density. To demonstrate the influence of power density, a calculation was done with core

power of 25 MW, 65 MW and 100 MW. The temperature distributions under three

different core powers are shown in Figure 5-10. The maximum temperatures,

corresponding with the core power, are 1500°K, 2200°K and 3000°K, respectively. This is

indicates that a core power higher than 100MW is necessary to maintain the gas

temperature at about 3000°K. Because of high heat flux the derivative of temperature at

the wall is much higher than the derivative of temperature at the center area. The

temperature at Q=100 MW grows much faster than temperature at Q=65 MW. The bulk

temperature and pressure distributions for different mass fluxes are shown in Figures 5-11

and 5-12, respectively.

5.2.2 Nusselt Number Calculations

Nusselt number correlations are of great importance to calculation of heat transfer.

However, almost all of these correlations are developed under fully developed and

constant wall heat flux conditions. In some cases the heat flux used for the generation of

the experimental data base is rather low. The low wall heat flux indicates small

temperature gradient in the flow boundary layer. Therefore the changes in flow

properties due to temperature gradient may not be important. Under flow, temperature

and heat flux conditions of ultrahigh temperature and compact HTGRs, similar to those
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proposedfor spacepowerandpropulsionapplications,theflow is not fully developed,so

the temperaturegradientcouldbe very large.So,the wall thermal boundaryconditions

may be different from what is usedfor the developmentof the experimentaldatabase

used for the derivation of the particularheat transferempirical correlation.Thus, the

detailed computationalanalysisdevelopedin this work is used to evaluatethe most

commonexperimentalcorrelationsfor wall heattransferin HTGRs.

Nusseltnumbervariationalongthe tube length is shownin Figures5-13 and 5-14.

From the resultsof this study,the Nusseltnumberincreasesasthe corepower increases.

The differencesof theNusseltnumber of corepowerof 25 MW, 50 MW, 75MW and

100MW at x=0.554m areabout14%anddifferencesof theNusseltnumberof massflux

of 45,60, 75 and90kg/m^2.sis about29.5%.It is interestingto notethat the corepower

andmassflux havesimilareffectsto Nusseltnumber.

5.2.3 Pressure Drop Calculations

Similarly, simplified equations are used to calculate the pressure drop in heated

channels of HTGRs. These equations may or may not be applicable to the flow and

thermal conditions of ultrahigh-temperature gas-cooled reactors. An analysis is performed

to evaluate the accuracy and validity of the pressure drop equations for HTGRs.

Equations which are conveniently used to calculate the accelerational and frictional

pressure drop in HTGR cores are:

,,vtt.w-J (5-9)

In 91 +2f--- D-/_P- "_m P2
(5-10)
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Figure 5-9 Flow pattern for gas cooled reactors.
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(5-11)

Figure 5-15 shows the axial pressure distribution in the heated flow channel as

calculated by the detailed Navier-Stokes solver and also by Equations (5-9), (5-10) and

(5-11). In Figure 5-15, Incm implies equation (5-9) which is found in Reference [2];

Coml implies equation (5-10) and Com2 implies equation (5-11) which can be found in

Reference [22]. From this analysis it is evident that the equation (5-9) provided the best

agreement with the numerical results. This is mainly due to the fact that the thermal

evolution of the flow is taken into account in the equation (5-9), which is much closer to

the governing equation used for the CFD calculation.

5.3 Calculations for XNR2000 Nuclear Rocket Core

The XNR2000 is a fast-spectrum cermet-fueled nuclear reactor that heats hydrogen

in a two-pass folded-flow configuration and delivers the hydrogen propellant to the

nozzle chamber before expansion through a nozzle, t141 The total engine flow rate is 12.1

kg/s and cycle operates at a chamber pressure and temperature of 5.5 MPa and 2850°K.

The engine delivers 111.2kN of thrust at a thrust to weight ratio of 5.1 and a specific

impulse of 944 seconds including kinetic and boundary layer effects in the nozzle. The

XNR2000 reactor core consists of 90 fuel elements in the outer core and 61 in the inner

core. the equivalent inner core diameter is 29.2 cm while that of the outer core is 45.94

cm.

This study considers a turbulent flow of hydrogen in a circular tube with a variety of

thermal boundary conditions. The computational models are used to evaluate and

compare the applicability of a number of widely used correlations for Nusselt number to

the high temperature and high heat flux conditions of hydrogen cooled nuclear rocket
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cores.In thesesystemsthe surfaceheatflux rangesfrom 10to 1000MW/m2, the flow

channeloutlettemperaturecanbeashigh as3200° K, the ratio between diameter and total

length varies from 150 to 1000 and the Reynolds number of the flow is in the range of

10 4 to 10 6 . The total flow length in this design is 0.55 m, and the tube diameter is

0.0032m resulting in L/D=165. The grid mesh is 90x50. A stagnation inlet pressure of

6.85 MPa and an back pressure of 6.55 MPa are used. The thermal boundary conditions

and Reynolds numbers for two cases considered in this section are listed in following

table:

Table 5.1 Thermal conditions and Reynolds number for XNR2000 rocket core.

Case

1 ( Uniform Ww)

2 (Uniform q")

Tw (K) q" (MW/m _Tin (K)

500 500+2300z/L - 20000

500 - 7+15 sin(_z/L) 15000

Reynolds Number

In computation procedure, approximately 1000 time steps and 5 seconds CPU time

per time step are required to reach a steady state. The final temperature residual is less

than 0.00001.

5.3.1 Non-dimensional Velocity. and Temperature Profiles

The non-dimensional velocity profiles for the uniform heat flux boundary

condition case are presented in Figure 5-16. It can be seen that the profiles rapidly

accelerate very near the wall before flattening out and increase slightly toward the

centerline, which is characteristic of turbulent velocity profiles. The flow reached a fully

developed state within 20.9 diameters of the entrance. This is very close to the results

obtained by Barbin and Jones. E6] The non-dimensional temperature profiles are shown in

Figure 5-17. This figure illustrates high temperature gradients at the inlet region and
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flattens out downstream as the bulk temperature increases. The temperature profiles

achieve fully developed conditions at the approximate 121.9 diameters from the tube

entrance. These results indicate that a velocity profile achieves the fully developed regime

before a fully developed temperature profile is obtained, that is the thermal entrance

length did not exceed the hydrodynamic entrance length. Due to temperature dependent

properties used for hydrogen, the temperature profiles shown in Figure 5-17 are slightly

different for those predicted for constant properties. Viscosity and thermal conductivity of

hydrogen are strong functions of temperature. They lead the values for hydrogen to be

significantly different at the wall and at the centerline temperatures.

5.3.2 Nusselt number calculations

The Nusselt number was calculated for both cases listed in the Table 5.1, as shown in

Figure 5-19. This figure indicates that the magnitude of Nusselt number appeared to be

mainly affected by Reynolds number. The higher the Reynolds number, the higher the

Nusselt number. The shapes of the two cases have different characteristics. Downstream

of the entrance the Nusselt number gradually increased, after initially decreasing for

uniform heat flux case, exhibiting a slight difference with the uniform wall temperature

case. It is due to that the trend of Nusselt number for case 1 is mainly dependent upon the

magnitude of dT/dr, but for case 2 it is mainly dependent upon the difference between Tw

and Tb. So, these different trends between the uniform wall boundary and uniform heat

flux boundary result in a slightly different heat transfer mechanism.

Among the long list of correlations for the Nusselt number, four correlations which

seem to have more relevance to the heat transfer in a nuclear rocket core are chosen for

this analysis. It should be noted that some of these correlations have been developed

based on experimental data which are not fully compatible with the boundary conditions

used in cases analyzed here. These correlations are used as a point of reference not to
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justify the validity of computational results. Figure 5-1 8 compares the numerical results

with four Nusselt number correlations without axial distance and property corrections.

These correlations include the Colbum equation, the Gnielinski correlation, the Karman-

Boelter-Martinelli equation and the Notter-Sleicher correlation, the Gnielinski

correlation [161 is an updated version of the Petukhov-Kirillov correlation t331 where the

range of Reynolds number and Prandtl number has been expanded. For the high

temperature and high heat flux hydrogen flow cases, a correction factor for the axial

distance and real gas property must be used. Figure 5-19 shows a comparison between

the numerical results and the Nusselt number correlations when the axial distance and

property corrections are applied. The Petukhov-Kirillov-Gnielinski equation, when

combined with the Perkins and Worsoe-Schmidt axial distance correction and the Notter-

Sleicher property correction has the best agreement with the numerically calculated

Nusselt number, differing by less than 3% at the last section measured.

Figures 5-18 and 5-19 vividly show the importance of using distance and property

corrections.
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CHAPTER6
SUMMARY AND CONCLUSIONS

A computational model based on the axisymmetric, thin-layer Navier-Stokes

equationshasbeenproposedto investigatethe convective,radiativeandconductiveheat

transferin nuclearreactors.An implicit-explicit, finite volume,MacCormackmethodin

conjunction with the Gauss-Seidelline iteration procedureis utilized to solve the

governing equations.The subsonicand supersonicflows of Hydrogen,Helium and

UraniumTetrafluorideundervariableboundaryconditions,suchasadiabatic,isothermal

and constantheat flux, are employedto simulatecoolant flow on reactor cores.An

enthalpy-rebalancingschemeis implementedto allow the convergencesolutions to be

obtainedwith the applicationof a wall heatflux. A two-dimensionalmethodbasedon

finite elementtechniqueis usedto investigatethe geometricbehaviorof nuclearreactor

fuel elements.Usingthedevelopedmodelsthefollowing studieshavebeencompleted.

1. Thin layer Navier-Stokes equations Due to the flow field at a high Reynolds

number, the thin-layer Navier-Stokes equations are used as the governing equations in

this study. In the thin-layer approximation to the full Navier-Stokes equations, the

viscosity terms containing derivatives parallel to the body surface, which are in inverse of

Reynolds number, are neglected. As a result, a substantial fraction of the available

computer storage and time is expended in resolving the normal gradients in the boundary

layer. In these calculations, the values of y+ at nearest the wall are less than 2. So a highly

stretched grid system is generated to lead stability and convergence. Good agreement
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between the computed results and prior calculations in the literature indicate the validity

of the governing equations.

2. Numerical modeling, A hybrid implicit-explicit, MacCormack scheme based on the

finite volume approach is employed to solve the governing equations. This numerical

algorithm has a rapid convergence compared to a simple explicit method. Normally, less

than 1000 iterations are needed to reach the steady-state for any flow conditions and any

fine grid system taken. MacCormack method is one of the most efficient of the second-

order scheme and the most popular two step Lax-Wendroff method for solving problems

with shock-capturing schemes. The calculations of this study indicate the good stability,

consistency and efficiency.

3. Turbulence model The Baldwin and Lomax two-layer algebraic turbulence model

is used in this study. For this turbulence model, the effects of turbulence are simulated in

terms of an eddy viscosity coefficient _tt. Thus, in stress terms of Navier-Stokes

equations, the molecular coefficient of viscosity la is replaced by _t+_. This model

simplifies the calculations of turbulent kinetic energy and eddy diffusivity of energy and

avoids the necessity for finding the edge of the boundary layer. It is used to yield faster

convergence at reasonable accuracy.

4. Radiative heat transfer model The Rosseland diffusion approximation is used to

simulate compressible, turbulent and developing flow of a radiative nongray gas in gas

core reactors. A well-known Rosseland mean absorption coefficient is adopted for the

approximation, which successfully made use of the diffusion theory in the radiation

calculation. This method is simpler to formulate and calculate in radiation heat transfer.

Good agreement between the computed results and the previous calculation in the

literature indicates the accuracy of the Rosseland radiation model.
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5. Thermal conduction model A Finite Element code ANSYS is used to investigate

the geometric behavior of fuel elements of a reactor core, which include plate, pin,

tubular and square lattice honeycomb. Based on the investigation a dimentionless

number, 5 number, is defined with respect to void parameter ct. The 5 number can be

used to control temperature gradients, which is important for the lifetime of reactor

components. The 5 number also provides an efficient method to calculate the centerline

temperature, instead of the time-consuming CFD procedure.

6, Wall heat transfer model and enthalpy rebalancing scheme Two boundary

conditions, constant wall temperature and constant wall heat flux, on the outside surface

of straight tube were included within the study. The relation of the boundary conditions is

found based on the Fourier's law. The difficulties in obtaining converged solutions with

heat flux boundary conditions were addressed. An enthalpy rebalancing scheme was

developed. The implementation of the enthalpy balancing scheme allowed convergent

solutions to be obtained with the application of a wall heat flux. This method has been

proven successful when problems with heat flux boundary condition are to be solved.

7. Validation of modeling The numerical models were used to calculate the

separation angle and drag force over a sphere which is bounded in a cylindrical tube. For

this classic project, good agreement between numerical results and the measured data in

the experiment indicated the validity of the developed models. Many different Nusselt

number equation, property corrections and axial distance corrections were investigated to

qualify the numerical calculation. Results demonstrated that the Petukhov-Kirillov-

Gnielinski equation combined with Perkins and Worsoe-Schrnidt axial distance

correction and the Notter-Sleicher property correction is the most relevant to this study.

This results also implied the assessment of the numerical models.
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8. Internal heat generation The effect of internal heat generation on the heat transfer

in the gas core reactors is examined for a variety of power densities, 100W/cc, 500W/cc

and 1000W/cc. The maximum temperature, corresponding with the heat generation rates,

are 2150°K, 2750°K and 3550°K, respectively. This analysis shows that the maximum

temperature is strongly dependent on the value of heat generation rate and also indicated

that a heat generation rate higher than 1000W/cc is necessary to maintain the gas

temperature at about 3500°K, which is typical temperature required to achieve high

efficiency in the gas core reactors.

9. Convective and radiative heat flux The convective and radiative heat fluxes are

predicted for the gas core reactors. The maximum value of heat flux occurs at the exit of

the reactor core. Radiative heat flux increases with higher wall temperature. This

behavior is due to the fact that the radiative heat flux is strongly dependent on wall

temperature. This study also found that at temperature close to 3500°K the radiative heat

flux is comparable with the convective heat flux.

The above accomplishments clearly demonstrate that the numerical model for

convective, conductive and radiative heat transfer has the ability to simulate the heat

transfer performance of nuclear reactor cores. This model can be used to predict the

important information about heat transfer in nuclear reactor systems, and to qualify the

classic empirical correlations which have been used for many years. There is no doubt

that the numerical model is a reliable computational tool for heat transfer analysis in

nuclear reactor analysis.



REFERENCES

[1] Anderson,D. A., Tannehill, J. C. and Pletch, R. H., Computational Fluid Mechanics

and Heat Transfer, Hemisphere Publishing Corporation, 1984.

[2] Anghaie, S., "Reactor Thermal Hydraulics," Class Notes, University of Florida,

Gainesville, Florida, 1992.

[3] Anghaie, S., "Thermophysical Properties of WE 4 at High Temperatures (1,000°K

<T<I 0,000°K )", Internal Report, University of Florida, Gainesville, 1992.

[4] Anghaie, S., Feller, G. J., Peery, S. D. and Parsley, C., "A Numerical Simulation

Package for Analysis of Neutronics and Thermal Fluids of Space Nuclear Power and

Propulsion Systems", American Institute of Physics, 1993.

[5] Baldwin, B. S. and Lomax, H., "Thin Layer Approximation and Algebraic Model

for Separated Turbulent Flows", AIAA 16th Aerospace $cience_ Meeting.

Huntsville, Alabama, AJAA 78-257, pp. 1-15, 1978.

[6] Barbin, A. R. and Jones, A. R., "Turbulent Flow in Inlet Region of a Smooth Pipe",

Journal of Basic Engineering, 10(1), pp. 29-34, 1963.

[7] Briley, J. and McDonald, H., "Solution of the Three-dimensional Compressible

Navier-Stokes Equations by an Implicit Technique", Proceeding of 4th Intemational

Conference on Numerical Method in Fluid Dynamics. New York, pp. 35-38, 1975.

[8] Chakravarthy, S. R., "Relaxation Methods for Unfactored Implicit Upwind Schemes",

AIAA Paper No. 84-0165, 1984.

[9] Chiang, S. T., Hoffmann, K. A. and Rutledge, W. H., "Comparison of Flux-Vector

Splitting Schemes for Finite Difference and Finite Volume Technique," AIAA Paper

No. 91-0170, 1991.

[10] Chung, S. W., "Analysis of Radiative and Convective Energy Transport Processes in

Ultrahigh Temperature Vapor Core Reactors", Ph.D. dissertation, University of

Florida, Gainesville, 1992.

[11] Chung, S. W. and Anghaie, S., "A Computational Model for Determination of Wall

Heat Transfer Rate Due to Flow of Very High Temperature, Optically Thick Gas",

110



111

NURETH-5, Proceedings of Fifth International Topical Meeting on Reactor Thermal

Hydraulics, Salt Lake City, UT, 1992.

[12] Dam, H. V. and Hoogenboom, J. E., "Physics of a Gaseous Core Reactor", Nuclear

10(3), pp. 359-368, 1983.

[13] Diaz, N. J., Anghaie, S., Dugan, E. T. and Maya, I., "Ultrahigh Temperature Reactor

and Energy Conversion Research Program", INSPI proposal to AFWAL, 1988.

[14] Feller, G. J., "Nuclear Design Methodology of a Compact Fast-Spectrum Beryllium-

Reflected Reactor", Ph. D. dissertation, University of Florida, Gainesville, 1994.

[15] Given, A. J., "Engine System Simulation and Core Thermo-Fluid Dynamics of

Nuclear Thermal Propulsion Rockets", Master's thesis, University of Florida,

Gainesville, 1993.

[16] Grielinski, V., "New Equations for Heat and Mass Transfer in Turbulent Pipe and

Channel Flow", International Chemical Engineering, 16(2), pp. 359-368, 1976.

[17] Hoffmann, K. A., Comput_ntional Fluid Dynamics for Engineers, Engineering

Education System, Austin, Texas, 1989.

[18] Hoogenboom, J. E., Dam, H. V. and Kuijper, J. C., "The Temperature Distribution in

A Gas Core Fission Reactor", Annuals of Nuclear Energy, 18(4), pp. 183-195, 1991.

[19] Hosegood, S. B.., "Development of Very High Temperature Reactors for Process Heat

Supply", Proceedings of the International Conference on High Temperature Reactor

and Process Applications, London, England, pp. 242-250, 1974.

[20] Hrisch, C., Numerical Computation of Internal and External Flows, John Wiley and

Sons, New York, Vol. 2, 1994.

[21 ] Im, K. H. and Ahluwalia, R. K., "Combined Convection and Radiation in Rectangular

Ducts", International Journal of Heat and Mass Transfer, 27(2), pp. 221-231, 1984.

[22] Kays, W. M. and Perkins, H. C., "Forced Convection Internal Flow in Ducts",

H_ndbook of Heat Transfer Fundamentals, McGraw-Hill, New York, 1985.

[23] Knight, D. D., "A Hybrid Explicit-Implicit Numerical Algorithm for the Three-

Dimensional Compressible Navier-Stokes Equations", AIAA Journal, 22(8), pp. 1056-

1063, 1984.

[24] Kumar, R., "Drag Measurement on a Suspended Sphere and Its Application to

Corrosive Gas Viscosity Measurement", Ph.D. dissertation, University of Florida,

Gainesville, 1992.



112

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Lawrence,S. L. and Tannehill, J. C., "Application of the Implicit MacCormack
Schemeto the ParabolizedNavier-StokesEquations",AIAA Journal, 22(12), pp.

1755-1763, 1984.

MacCormack, R. W., "The Effect of Viscosity in Hypervelocity Impact Cratering",

AIAA Paper No. 69-354, 1969.

MacCormack, R. W., "A Numerical Method for Solving the Equations of

Compressible Viscous Flow", AIAA Journal, 20(9), 1982.

MacCormack, R. W., "Current Status of Numerical Solutions of the Navier-Stokes

Equations", AIAA 23rd Aerospace Science Meeting, Reno, Nevada, AIAA Paper

85-032, pp. 1-21, 1985.

Napolitano, M. and Waiters, R. W., "An Incremental Block-Line-Gauss-Seidel

Method for the Navier-Stokes Equations", AIAA Paper 85-0033, 1985.

Oliver, C. C. and Dugan, E. T., "Thermophysicai Properties of UF6-He Mixture

Relevant to Circulating Gas Core Reactor Systems", Nuclear Technology, 69(2),

May, 1985.

Ozisik, M. N., Heat Conduction, John Wiley and Sons, New York, 1980.

Patch, R., "Status of Opacity Calculations for Application to Uranium-Fueled Gas-

Core Reactor", Proceedings of Symposium on Research on Uranium Plasma and Their

Technological Applications, University of Florida, Gainesville, Florida, pp. 165-171,

1970.

Petukhov, M., "Heat Transfer and Friction in Turbulent Pipe Flow with Variable

Physical Properties", Advances in Heat Transfer. Academic, New York, pp. 503-

564, 1970.

Reynolds, W. C., Thermodynamic Properties in SI, Stanford University, Stanford,

California, 1982.

Schlichting, H., Boundary. Layer Theory., McGraw-Hill, Inc., 1979.

Schwartz, H. R., "Numerical Analysis. A Comprehensive Introduction", John Wiley

and Sons Ltd., 1989.

Seo, T., Kaminski, D. A. and Jensen, M. K., "Combined Convection and Radiation in

Simultaneously Developing Flow and Heat Transfer with Nongray Gas Mixtures",

Numerical Heat Transfer, 26(1), pp. 49-66, 1994.



113

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Shah, R. K. and Johnson, R. S., "Correlations for Fully Developed Turbulent Flow

through Circular and Noncircular Channels", Proceedings of the 6th International

Heat and Mass Transfer Conference, Madras, India, pp. 75-96, 1981.

Siegel, R. and Howell, J. R., Thermal Radiation Heat Transfer. Hemisphere Publishing

Corporation, 1981.

Soufiani, A. and Taine, J., "Application of Statistical Narrow-Band Model to Coupled

Radiation and Convection at High Temperature", International Journal of Heat and

Mass Transfer, 30(3), pp. 437-447, 1987.

Steger, J. L. and Warming, R. F., "Flux Vector Splitting of the Inviscid Gas Dynamic

Equations with Application to Finite-Difference Methods", NASA TM D-78605,

1979.

Sparrow, E. M., and Cess, R. D., Radiation Heat Transfer_ Hemisphere Publishing

Corporation, 1978.

Sutton, G. W., and Sherman, A., Engineering Mamaetohydrodynamics, McGraw-Hill,

Inc., 1965.

Todreas, N. E., and Kazimi, M. S., Nuclear System 0)- Thermal Hydraulic

Fundamentals. Hemisphere Publishing Corporation, New York, 1990.

Vargaftik, N. B., Handbook of Physical Properties of Liquids and Gases, Hemisphere

Publishing Corporation, 1987.

Viegas and Rubesin, M. W., "On the Use of Wall Function as a Boundary

Conditions for Two-dimensional, Separated Compressible Flows", AIAA 23rd

Aerospace Sciences Meeting, Reno, Nevada, AIAA 85-0180, pp. 1-11, 1985.

Viskanta, R. and Grosh, R. J., "Boundary Layer in Thermal Radiation Absorbing and

Emitting Media", Intemational Journal of Heat and Mass Transfer, 5(4), pp. 759-

806, 1962.



Form Approved
REPORT DOCUMENTATION PAGE OMBNo.0704-01_

Public repmlkng burden fix this ooll_icn d _ is emimated to average 1 hour per req_nm, inc4oding the tirrm fix remmm 9 mtrucli_nl mmrching exicting dam eouro_,
oalhednn and maJntoining lhe dala nmded, and ¢omPleling and mdewlng the coikctkm of Infixmallon- Send comrrw_ mgmding this burden eslknale o¢ any olhlr aspKt _ this

of ink_nlm_icn, lcK:_cnng st_4mtlom lot" reduck_ this burden, to Washington Headq_ ,_m4oN, Dimct_am Ior InfixrmCon OpecaCons and Reports. 1215 Jeffecson
Davis Highway, Sulm 1204, Arlln0ton, VA 22202-4302, and to the Office of MaW and Budge(, Paperwork Reduction Pm_ect _04-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave b/ank) 2. REPORT DATE 3. _PORT TYPE AND DA_._ COVr-P_.b

April 1996 Final Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING N_ERS

A Computational Fluid Dynamic and Heat Transfer Model for Gaseous Core and

Gas Cooled Space Power and Propulsion Reactors

6. AurnK_S)

S. Anghaie and G. Chen

7. PERFOFtMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Florida

Ulu'ahigh High Temperature Reactor and Energy Conversion Program
Innovative Nuclear Space Power and Propulsion Insdmte
Gainesville, Florida 32611

9. SPONSORING/MOt_ORING AGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

WU-233-O1-0N

C-NAS3-26314

8. PERFORMING ORGANIZATION

REPORT NUMBER

E-9882

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR-198389

11. _NTARY NOTES

Project Manager, Harvey S. Bloomfield, Power Technology Division, NASA Lewis Research Center, organization
code 5440, (216)433--6131.

12L DISTRIBUTiON/AVAILABILITY STATEMENT

U.class_ed - Unlimited
Subject Categ_'ies 20 and 66

This publical/on is available fxom the NASA Center for Aerospace Infonmfion. (301) 621--0390.

12b. DISTRIBUTION COOE

13. ABSTRACT (Max/mum 200 we_rde)

A _ model based m the txisymmemc, thin-layer- Navief-Stokes equaficm is _ to predict the convective, radiation and conductive
heatInmsf_rinhishtmnl)eZ,sm_ spacenuclearw.acton. An impli_-explicit, finite volume, MacConnack method;- omljuncfionwith the Gauss-Seidel

itL'xation procedm_ is uu_ized to solvethethermaland fluid governingeqmudom.Simulation of coolant md l_cpel]ant flows _nthesereactors

involves the subson/c and superson/c flows of Hydrogen, Helium and Uranimn Tern,fluoride imder variable bctmdary conditions. An end_]py-

ndudancing scheme is developed and implemonted to enhance =ridaccelerate the rate of conveyance wlum a wall heat flux bounda:y condition is used.
The model also incoqxmm_ the Baldwin and Lomax two-layer algebraic mrtm_ce scheme for the ca/culation of the mrb.]em id_fic energyand eddy
diffmivity of energy. "l'neRossehtnd diffusion approximation is used to s_nulate the radiative energy tnmder in the opdcally thick mvi_mn(_t of gas
core _acton. The computafionalmodelis benchmarkod with _ data on flow sepanu/_ angle md drag forceacfing on a susponded sphe_in
acylhuiricalmbe. Theheat Irans_eris vafidatodbycomparin8 the compmed results withthe standanlheattrmsfercocm.Lationsp_edio-k_s. Thenmdelis
used to simu]ale flow and heat tnms_e_ trader a vat/cry of design co_itiom. The effect of intenud heat generation on the heat lrandex in the gas cole
reao.ors is _ for a variety c_ power densities, 100 W/cc, 500 W/c¢ and 1000 W/cc. The maximum lemperam_, oonesponding viah the heat
8meration rates, aze 2150°K. 2750°K and 355(PK. _.spec_,ely. This malysis shows that the maximmn tempemtme is suunsly deponde,t on the value o_
heat ganerafie_ raw.. It aho indicates that a heat generation rate higher than 1000 W/co is necessmy to maintain the gas tempentmre at about 3500°K,

which is typical desisn temperature required to _e hish effu:ieacy in the gas on_ teacup's. The model is also used to l_m-_listthe convective and
radiaticn heat fluxes fc¢the gas omet_ac_ors. Themaximmn value of heat flux occurs at lhe exit of the reactor core. Radiation heat flux increases with
higher wall tempommre. This behavior is due to the fact that the radiative hea_ flux is stnmgly dependant on wall temperatme. This smdyalsofound_t

at te=nperamre close to 3500°K the radiative heat flux is ccn_mtble wkh the convective heat flux in a unmium fluoride failed gas core reactoc

14. SUBJECT TERMS

Reactormodeling;,Heat transfer;,Computational fluid dynamics;Nuclearpower
and lxopulsion

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECUI:In'Y CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

120
16. PRICECODE

A_
20. UMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Pre_rllbed by ANSI S_d. 7.39-18
298-102





<o _"_ _o "m

-- _ oO¢_.

_'_ __
I

o CO
z _

..n

c

3


